				EK			2022-23 Batch					
SI.	Category	Subject Code	Subject Title	Credits	нс w	OUR /EEI	s/ <	EXAMINATION MARKS				
NU					L	Т	Ρ	CIE	SEE	TOTAL		
			Numerical									
1.	BSC	22UMA302C	Techniques and	03	3	0	0	50	50	100		
			Fourier Series									
2.	IPCC	22UBT301C	Microbiology	04	3	0	2	50	50	100		
3.	IPCC	22UBT305C	Unit Operations	04	3	0	2	50	50	100		
4.	PCC	22UBT303C	Biochemistry	03	3	0	0	50	50	100		
5.	PCC	22UBT307L	Biochemistry lab	01	0	0	2	50	50	100		
6.	INT	22UBT308I	Internship	02	0	0	2	100	-	100		
7		2211152240	Universal Human	01	h	0	0	F.0	50	100		
7.	UHV	220033240	Values –II	01	Z	0	0	50	50	100		
		22UHS322C	Samskruthika									
8.	HSMC		Kannada-	01	2	0	0	50	50	100		
		22UHS323C	Balake Kannada									
a	AFC	2211072060	Cell Culture	02	2	0	0	50	50	100		
9.		220013000	02	2	0	0	50	50	100			
			Total	21	17	2	8	500	400	900		

SCHEME OF TEACHING AND EXAMINATION III SEMESTER

22UMA	302C			03 - Credits (3 : 0 : 0)										
Hours / W	/eek : 03		S AND FOURIER	CIE Mar	⁻ ks : 50									
Total Hou	urs : 40	JENIES		SEE Mai	rks : 50									
		UNIT – 1			10 Hrs.									
Numerical N	Methods-I:													
Introduction	to root fir	ding problems, Newton-Ra	aphson method. Fi	nite differenc	es, forward									
and backwa	rd differend	e operators (no derivation	s on relations betw	veen operator	s) Newton-									
Gregory for	ward and	backward interpolation for	ormulae. (Without	proof), Lagr	ange's and									
Newton's di	Newton's divided difference interpolation formulae (without proof) Numerical differentiation													
using Newto	using Newton's forward and backward formulae-problems.													
		UNIT – 2			10 Hrs.									
Numerical N	/lethods -ll:	.	- · ·											
Numerical I	ntegration:	Simpson's one third rule,	Simpson's three	eighth rule w	addles' (no									
derivation of	ot any tori	nulae)-problems. Numeric	al solution of OE	DE: Taylors, I	Euler's and									
Modified Eu	ler's metho	d, Runge-Kutta 4 th order me	ethod, miles Predic	tor corrector r	nethod.									
		UNIT – 3			10 Hrs.									
Fourier serie	es:		· _											
Periodic fur	ICTIONS, CO	nditions for Fourier series	s expansions, Fou	rier series ex	pansion of									
continuous	and functio	ns naving finite number (of discontinuities,	even and odd	Tunctions.									
Hall-range S	eries, practi				10 Цис									
Fourier tran	sforms	UNIT - 4			10 112									
	ior transfor	ms and inverse Fourier trai	sforms- simple pro	operties Four	ier sine and									
Fourier cosir	ne transforr	ns Inverse Fourier sine and	cosine transforms	operties, rour										
				•										
1 Numeri	, cal Method	s for Engineers by Steven C	Chapra & Baymond	l P Canale										
2 Higher I	Engineering	Mathematics by Dr. B.S. Gi	ewal Khanna Puhl	ishers New D	elhi									
3 Advance	ed Engineer	ing Mathematics By H K C	as S Chand & con	nnany Itd Rar	n Nagar									
New De	lhi				in Hugur,									
4. Advance	ed Engineer	ing Mathematics by E Kreys	zig ,John Wiley & S	Sons.										
LEARNING C	BJECTIVES	i	i											
1. To u	understand	the numerical methods	of solving algebr	raic and trar	scendental									
equa	tions.													
2. To ac	quire the k	nowledge of interpolation t	echniques.											
3. To u	•													
	nderstand t	he basic concepts of num	erical differentiatio	on, numerical	integration									
and r	nderstand t numerical se	he basic concepts of num plution of ordinary differen	erical differentiatio	on, numerical	integration									
and r 4. To ur	nderstand t numerical so nderstand c	he basic concepts of num plution of ordinary different procepts of Fourier series a	erical differentiatic ial equations. nd Fourier transfor	on, numerical ms.	integration									

COURSE OUTCOMES

After completion of the course the students shall be able to,

- 1. Solve engineering problems using non-linear equations and interpolation techniques.
- 2. Solve problems using numerical differentiation and numerical integration.
- 3. Solve ordinary differential equations using numerical methods.
- 4. Solve Problems using the Fourier series.
- 5. Solve problems using the basic concept of Fourier transforms.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO
		1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
Ν	Programme															
ο	Outcomes															
	Course Outcomes															
The	e students will be able [.]	to:														
1	Solve engineering															
	problems using non-															
	linear equations and	\checkmark	\checkmark													
	interpolation															
	techniques.															
2	Solve problems using															
	differentiation and															
	numerical	~	✓													
	integration.															
3	Solve ordinarv															
	, differential equations															
	using numerical	\checkmark	\checkmark													
	methods.															
4	Solve Problems using	\checkmark	\checkmark													
	the Fourier series.															

5	Solve problems using									
	the basic concept of	\checkmark	\checkmark							
	Fourier transforms.									

22UBT301C		Credits: 04 (3: 0: 2)
L: T: P - 3: 0: 2	MICROBIOLOGY	CIE Marks:	50
Total Hours/Week: 40		SEE Marks	: 50
	UNIT-I		10 Hrs.
Introduction:			
Scope of microbiology, History	of microbiology-Evolution of microbes.	Contributions of S	cientist fo
he development of microbic	ology. Microbial diversity & taxonomy,	Prokaryotes & E	ukaryotes
Microscopy: Principles and ap	plications of Bright field microscopy, D	ark-Field Microsco	opy, Phas
contrast microscopy, Fluoresce	ence Microscopy and Electron microscop	y (SEM & TEM).	
	UNIT–II		10Hrs.
Microorganisms: Bacteria- Morphology and ul	UNIT-II tra structure of Bacteria, Culturing of	bacteria, reprodu	10Hrs.
Microorganisms: Bacteria- Morphology and ul growth (continuous and batch) of reproduction. Fastidious m techniques- Aerobic and Anaer	UNIT–II tra structure of Bacteria, Culturing of).Viruses, fungi, algae, protozoa, actinom icroorganisms. Microbial toxins. Microb robic culture techniques. Fermentation (a	bacteria, reprodu ycetes- structure a ial Techniques: Pu acid & alcohol).	10Hrs. action and and mode are cultur
Microorganisms: Bacteria- Morphology and ul growth (continuous and batch) of reproduction. Fastidious m cechniques- Aerobic and Anaeu	UNIT–II tra structure of Bacteria, Culturing of).Viruses, fungi, algae, protozoa, actinom icroorganisms. Microbial toxins. Microb robic culture techniques. Fermentation (a UNIT–III	bacteria, reprodu ycetes- structure a ial Techniques: Pu acid & alcohol).	10Hrs. auction and and mode are cultur 10 Hrs.
Microorganisms: Bacteria- Morphology and ul growth (continuous and batch) of reproduction. Fastidious m techniques- Aerobic and Anaeu Control of Microorganisms:	UNIT–II tra structure of Bacteria, Culturing of).Viruses, fungi, algae, protozoa, actinom icroorganisms. Microbial toxins. Microb robic culture techniques. Fermentation (a UNIT–III	bacteria, reprodu ycetes- structure a ial Techniques: Pu acid & alcohol).	10Hrs. action an and mode are cultur 10 Hrs.
Microorganisms: Bacteria- Morphology and ul growth (continuous and batch) of reproduction. Fastidious m techniques- Aerobic and Anaer Control of Microorganisms:	UNIT–II tra structure of Bacteria, Culturing of).Viruses, fungi, algae, protozoa, actinom icroorganisms. Microbial toxins. Microb robic culture techniques. Fermentation (a UNIT–III by Physical methods and chem	bacteria, reprodu ycetes- structure a ial Techniques: Pu acid & alcohol). ical methods. a	10Hrs. and mode are cultur 10 Hrs.
Microorganisms: Bacteria- Morphology and ul growth (continuous and batch) of reproduction. Fastidious m techniques- Aerobic and Anaeu Control of Microorganisms: Control of microorganisms chemotherapeutic agents and	UNIT–II tra structure of Bacteria, Culturing of).Viruses, fungi, algae, protozoa, actinom icroorganisms. Microbial toxins. Microb robic culture techniques. Fermentation (a UNIT–III by Physical methods and chem Phage biotics. Medical Microbiology: I	bacteria, reprodu ycetes- structure a ial Techniques: Pu acid & alcohol). ical methods, a Normal microflora	10Hrs. action an and mode are cultur 10 Hrs. antibiotics , commo
Microorganisms: Bacteria- Morphology and ul growth (continuous and batch) of reproduction. Fastidious m techniques- Aerobic and Anaer Control of Microorganisms: Control of microorganisms chemotherapeutic agents and diseases caused by microbes-p	UNIT–II tra structure of Bacteria, Culturing of).Viruses, fungi, algae, protozoa, actinom icroorganisms. Microbial toxins. Microb robic culture techniques. Fermentation (a UNIT–III by Physical methods and chem Phage biotics. Medical Microbiology: I pathogenesis, symptoms, diagnosis, treat	bacteria, reprodu ycetes- structure a ial Techniques: Pu acid & alcohol). ical methods, a Normal microflora ment, prevention.	10Hrs. and mode are cultur 10 Hrs. antibiotics , commo
Microorganisms: Bacteria- Morphology and ul growth (continuous and batch) of reproduction. Fastidious m techniques- Aerobic and Anaer Control of Microorganisms: Control of microorganisms chemotherapeutic agents and diseases caused by microbes-p	UNIT–II tra structure of Bacteria, Culturing of).Viruses, fungi, algae, protozoa, actinom icroorganisms. Microbial toxins. Microb robic culture techniques. Fermentation (a UNIT–III by Physical methods and chem Phage biotics. Medical Microbiology: I pathogenesis, symptoms, diagnosis, treat UNIT–IV	bacteria, reprodu ycetes- structure a ial Techniques: Pu acid & alcohol). ical methods, a Normal microflora ment, prevention.	10Hrs. uction an and mode ure cultur 10 Hrs. antibiotics , commo 10 Hrs.
Microorganisms: Bacteria- Morphology and ul growth (continuous and batch) of reproduction. Fastidious m techniques- Aerobic and Anaer Control of Microorganisms: Control of microorganisms chemotherapeutic agents and diseases caused by microbes-p	UNIT–II tra structure of Bacteria, Culturing of).Viruses, fungi, algae, protozoa, actinom icroorganisms. Microbial toxins. Microb robic culture techniques. Fermentation (a UNIT–III by Physical methods and chem Phage biotics. Medical Microbiology: I rathogenesis, symptoms, diagnosis, treat UNIT–IV tal Microbiology:	bacteria, reprodu ycetes- structure a ial Techniques: Pu acid & alcohol). ical methods, a Normal microflora ment, prevention.	10Hrs. and mode are cultur 10 Hrs. antibiotics , commo 10 Hrs.
Microorganisms: Bacteria- Morphology and ul growth (continuous and batch) of reproduction. Fastidious m techniques- Aerobic and Anaer Control of Microorganisms: Control of Microorganisms chemotherapeutic agents and diseases caused by microbes-p Agricultural and Environment	UNIT–II tra structure of Bacteria, Culturing of).Viruses, fungi, algae, protozoa, actinom icroorganisms. Microbial toxins. Microb robic culture techniques. Fermentation (a UNIT–III by Physical methods and chem Phage biotics. Medical Microbiology: I pathogenesis, symptoms, diagnosis, treat UNIT–IV tal Microbiology: Aquatic Microbiology Bio-fertilizer Pla	bacteria, reprodu ycetes- structure a ial Techniques: Pu acid & alcohol). ical methods, a Normal microflora ment, prevention.	10Hrs. uction an and mode ure cultur 10 Hrs. antibiotics , commo 10 Hrs. licrobes i
Microorganisms: Bacteria- Morphology and uli growth (continuous and batch) of reproduction. Fastidious mitechniques- Aerobic and Anaer Control of Microorganisms: Control of microorganisms chemotherapeutic agents and diseases caused by microbes-p Agricultural and Environment Microbiology of soil, Air and bioremediation and bio-contro	UNIT–II tra structure of Bacteria, Culturing of).Viruses, fungi, algae, protozoa, actinom icroorganisms. Microbial toxins. Microb robic culture techniques. Fermentation (a UNIT–III by Physical methods and chem Phage biotics. Medical Microbiology: I rathogenesis, symptoms, diagnosis, treat UNIT–IV tal Microbiology: Aquatic Microbiology, Bio-fertilizer, Pla	bacteria, reprodu ycetes- structure a ial Techniques: Pu acid & alcohol). ical methods, a Normal microflora ment, prevention.	10Hrs. uction an and mode ure cultur 10 Hrs. antibiotics , commo 10 Hrs. licrobes i

Industrial Microbiology: Microbial processes using yeasts and bacteria (production of alcohol, vinegar, cheese), Microbes as source of protein (SCP), gelatin agents (alginate, xanthin, agar agar) Microbial insecticides, Enzymes from Microbes (amylase, protease), Useful products from microorganisms using recombinant DNA technology (vaccines and antibiotics).

REFERENCE BOOKS

- 1. Pelczar, Chan and Noel Kreig, "Microbiology"- 5th Edition Tata Macgraw Hill, 2010.
- Tortora, Funke and Case, "Microbiology an Introduction" -8th Edition, Pearson Education, 2006.
- 3. Stainer R.Y., Ingraham J.L., "General Microbiology"- 5th Edition Mc.Millan Press, 2010.
- 4. Madigan, Martinko, Parker, Brock's, "Biology of Microorganisms" 10th Edition, Prentice Hall, Pearson Education, 2003.
- 5. Prescot and Dunn, "Industrial Microbiology"-Agribios India, 2002.
- 6. J. Salle, "Fundamental Principles of Bacteriology" 7th Edition, Tata Macgraw Hill, 2007.
- 7. E Alcamo I "Fundamentals of Microbiology"6th Ed, Jones & Bartlet, Pub. 2001.
- 8. Prescott, Harley & Klein, "Microbiology" -7th Edition, WCB/McGraw Hill, Int. Edition, 2008.

LEAKINING OBJECTIVES
 To know the basic concepts of Microbiology, scope and organization of organisms in the taxonomy.
• Ability to understand the techniques to study microorganisms through microscopy.
Capable to analyse the structure of different microbes and their applications.
To know the metabolic reactions within the organisms for fermentation process.
COURSE OUTCOMES**
Ability to know the basic concepts of Microbiology, scope ,organization and understand the
techniques to study microorganisms through microscopy
 Ability to analyze the structure of different microbes and interpret the techniques used to grow and identify the microbes
Ability to discuss the causative organisms of the disease and their effect on society
Ability to analyse the applied techniques in the environment and create awareness to
1. Study of microscopes: Types, working principle, parts of the microscope, handling (operating) & caring.
 Media preparation: NA, Peptone broth, PDA, Macconkeys agar. Isolation of bacteria by serial dilution, pour plate ,spread plate and streak plate techniques
4 Isolation and identification of bacteria and fungi from different sources
5 Study of colony characteristics and Morphology of bacteria, yeasts and fungi
6 Study of different staining techniques (Simple staining differential staining)
7 Enumeration of microorganisms using colony counter
8 Fermentation of Carbohydrates (gas production)
9. Growth curve of bacteria and yeast.
10. Antibiotic susceptibility testing of bacteria & Observation of motility by hanging drop
technique.
COURSE OUTCOMES
1. Ability to know the basic concepts of Microbiology, scope ,organization and understand
the techniques to study microorganisms through microscopy
2. Ability to analyze the structure of unterent microbes and interpret the techniques used
3 Ability to discuss the causative organisms of the disease and their effect on society
 Ability to analyse the applied techniques in the environment and create awareness to society

Course Outcomes				F	Progr	Prog	Programme Specific Outcomes								
	1 2 3 4 5 6 7 8 9 10 11 12												PSO1	PSO2	PSO3
CO 1	2	2	2			2		2					1	1	1
CO 2	2	2	2		2	3		1					2	1	2
CO 3	3	3	2		2	2		1				1	1	1	2
CO 4	3 3 3 2 3 2 1									2	1	3			

22UBT305C		Credits: 04
L:T:P – 3:0:2	UNIT OPERATIONS	CIE Marks: 50

Total Hours/Week: 05

UNIT-I 10 Hrs. Introduction to Fluid Mechanics: Units and Dimensions, Basic and Derived units, Dimensional homogeneity, Dimensionless numbers, Rayleigh method, Buckingham's pi theorem, Similitude. Fluid definition and classification (Types of fluids – Newtonian and Non Newtonian); Rheological behaviour of fluids. Fluid statics and its applications Hydrostatic equilibrium, Pressure measurement - Manometers. UNIT-II 10 Hrs. Flow past Immersed Bodies: Types of flow - laminar and Turbulent; Reynolds number; Basic equations of fluid flow - Continuity equation and Bernoulli equation; Correction for Bernoulli's equation, Pump work in Bernoulli's equation; Flow through circular and non-circular conduits – Friction factor relations for smooth and commercial pipes. UNIT-III 10 Hrs. Flow measurements: Orifice meter, Venturimeter, Rota meter. Pumps, principle, construction numerical. Major and minor losses, Centrifugal & Reciprocating pumps, Characteristics of centrifugal pumps. Pipes, fittings and valves. Dimensional Analysis. 10 Hrs. UNIT-IV **Mechanical Operations:** Types of filtration, Filter media and filter aids, calculation of resistances and rate of filtration, filtration equipment. Settling, Free and Hindered, Stoke's law, Newton's law, Terminal settling

velocity, Batch sedimentation, Agitation: Theory of mixing, Power number calculations, mixing equipment. Flow patterns in agitated tanks, mechanism of mixing, scale up of mixing systems. Size Separation: Particle shape, size, screen analysis, screening equipment. Size Reduction: Characteristics of comminute products, crushing laws and work index; Size reduction equipment.

LIST OF EXPERIMENTS IN UNIT OPERATIONS LABORATORY

- 1. Friction in circular and non-circular pipes
- 2. Flow rate measurement using Orifice meter

- 3. Flow rate measurement using Venture meter
- 4. Batch sedimentation test
- 5. Constant pressure /constant filtration using leaf filter
- 6. Verification of Stoke's law in Free / Hindered settling
- 7. Determination of screen effectiveness and sieve analysis
- 8. Verification of Bernoulli's theorem
- 9. Unsteady state flow
- 10. Study of packed bed characteristics
- 11. Distillation

Reference Books *

- McCabe WL, Smith JC and Harriott (2005) Unit operations of Chemical Engineering, 7th Edn., McGraw-Hill Publications, USA.
- 2. Gavhane K. A (2012) Unit Operations I & II, 22nd Edn. Nirali Prakashan, India.
- 3. Alan S Foust, Wenzel LA, Clump CW, Maus L, and Anderson LB (2008) Principles of Unit Operations. 3rd Edn. John Wiley & Sons, USA.
- 4. R. P. Chhabra V. Shankar (2017) Coulson and Richardson's Chemical Engineering Volume 1A: Fluid Flow: Fundamentals and Applications. 7th Edition, Elsevier, USA.
- 5. R.P. Chhabra Basavaraj Gurappa (2019) Coulson and Richardson's Chemical Engineering Volume 2A: Particulate Systems and Particle Technology. 6th Edition, Elsevier, USA.

Course Outcomes**

After completion of the course student will be able to

- 1. Understand the application of dimensional analysis and can state and describe the nature and properties of the fluids.
- 2. Apply the knowledge of fluid mechanics in Engineering applications
- 3. Determine the flow rate, discharge of transportation fluids
- 4. Apply the knowledge of mechanical operations in Engineering applications

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes		Programme Outcomes (POs)											Program Specific				
				Outcomes (PSOs)													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	2	2	2	1	1	-	-	-	-	-	-	-	3				
CO2	3	2	3	2	1	-	-	-	-	-	-	-	3				
CO3	3	2	1	1	1	-	-	-	-	-	-	-	3				
CO4	2	3	3	1	1	-	-	-	-	-	-	-	2				

22UBT303C		Cre	dits: 03									
L: T: P - 3: 0: 0	BIOCHEMISTRY	CIE M	arks: 50									
Total Hours/Week: 42		SEE M	arks: 50									
	UNIT – 1		12 Hrs.									
Principles of Bioenergetics: Energy Flow cycle, energy metabolic pathway	conversion. Structure and properties	of ATP, Bic	penergetics of									
Carbohydrate Metabolism:												
Glycolysis, TCA cycle, Electr energetics. Calvin Cycle, Gly regulation of gluconeogenes Disorders of carbohydrate disorder etc. (Defective enz Osazone formation to identi	on transport chain and oxidative phosp yoxylate cycle, Pentose Phosphate Pathy sis. metabolism- Galactosemia, Lactose into yme lead to disorder during metabolism). fy the carbohydrates.	horylation a way, Glucone lerance, Gly	nd respiration eogenesis and cogen storage									
UNIT – 2 10 Hrs.												
Biosynthesis of fatty acids. biosynthesis, biodegradatic diabetes.	cholesterol, phospholipids and glycolipid on of fatty acid, ketone bodies produc	ls, Regulation ction during	n of fatty acid starving and									
			10 Hrs									
Nucleic acid Metabolism:	ONIT 5		101113.									
Biosynthesis of purines - ori GMP.De novo synthesis of p of purines&pyrimidines. pathways.Disorders of nucle	gin of ring atoms, formation of IMP, conv pyrimidine nucleotides - biosynthesis of L Recycling of Purine and Pyrimidine ic acid metabolism-Lesch-Nyhan Syndron	version of IM JTP & CTP. B nucleotides ne and Gout	IP to AMP and liodegradation s by salvage									
	UNIT – 4		10 Hrs.									
Amino Acid Metabolism: Biosynthesis of amino acids Aspartate, Asparagine, M	s starting from acetyl CoA (with reference Iethionine, Lysine, Threonine.Biodegra	ce to oxaload dation of	cetate family)-									

	REFERENCES
1.	David L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" -6th Edition
	LubertStryer, "Biochemistry" -Freeman & Co., Pub, 2010.
2.	Voet&Voet, "Biochemistry"- 3rd Edition, John Wiley,New York Pub., 2004.
3.	Thomas M. Davlins" Biochemistry with clinical correlations" Wiley-Liss; 5 edition, 2001.
4.	Mathews, Vanholde&Arhen "Biochemistry" -3rd Edition, Pearson Education Pub., 3 edition 2010.
5.	K. Trehan, "Biochemistry" -New Age International Pub, 2nd edition, 2003
6.	Elliot & William H, "Biochemistry & Molecular Biology" Oxford Pub., 2005.
7.	Helmreich JEM, "Biochemistry of cell signaling" –Oxford Pub. 2005.
8.	U. Sathyanarayana, "Biochemistry" -Books and Allied Pub, 2007
9.	Berg J.M., Stryer, Tymoczko J.L. "Biochemistry" Freeman & co 2010.
10	. Freifelder D. "Molecular Biology" -Narosa Publications, 2nd Edition 2003.
	LEARNING OBJECTIVES
•	To understand the principles of bioenergetics.
•	To study metabolic pathway reactions and analysis of metabolic disorders.
•	To study the experimental identification of biomolecules.
	LIST OF EXPERIMENTS
	COURSE OUTCOMES
1.	Ability to understand the principles of high energy compounds & interpret
	the metabolic pathways in the carbohydrates and their disorders
2.	Ability to recognize the regulation of lipid metabolism along with the in born errors.
3.	Ability to understand the origin of atoms in purine and pyrimidine & also
	interpret the pathways in the nucleic acid metabolism disorders
4.	Ability to comprehend pathways involved in amino acid metabolism and its disorders

Course Outcomes		Programme Outcomes Programme Specifi Outcomes														
	1	1 2 3 4 5 6 7 8 9 10 11 12											PSO1	PSO2	PSO3	
CO 1	1	2	3	2			3	3				3	2	3		
CO 2	2	3	3	3		3	2	3				3	2	1	2	
CO 3	2	2	3	3		3	2	2				3	3	2		
CO 4	2	2	2	2		2	2	2				2	2	2		

SUBJECT CODE:22UBT307L

CO 6

2

2

3

3

3

3

2

3

2

1

BIOCHEMISTRY LABORATORY

L: T: P - 0: 0:2 Total Hours/Week: 42

	LIST OF EXPERIMENTS														
														:	12 Hrs.
1.	pH m	easu	reme	ents,	volur	ne / י	weigł	nt me	easur	emen	ts, coi	ncenti	ration un	its, Spec	cificity,
	preci	sion,	Accu	racy.											
2.	Class	es of	carb	ohyd	rates	, lipic	ls and	d pro	teins.						
3.	Reage	ent p	repa	ratio	n and	prep	oarati	on of	f buff	ers of	const	ant st	rength.		
4.	Quali	tative	e test	ts for	carb	ohyd	rate a	and li	pids.						
5.	Quali	tative	e test	ts for	amir	io aci	ids ar	nd pro	otein	s.					
6.	Estim	ation	n of s	ugar	by Fc	lin aı	nd O-	tolue	ene m	nethoo	J.				
7.	Estim	ation	n of a	minc	acid	and	prote	ein by	' ninh	ydrin	meth	od			
8.	Deter	rmina	ntion	of Sa	poni	ficati	on va	lue o	f lipio	ds.					
9.	Deter	rmina	ntion	of Io	dine	value	of li	oid.							
10.	Deter	rmina	ntion	of ac	etyl v	/alue	of a	lipid.							
11.	Estim	ation	n of u	irea b	oy dia	cetyl	mone	ooxin	ne me	ethod.					
							REF	REN	CES						
1.	Rodn	ey Bo	oyer,	"Mo	dern	Expe	rimer	ntal B	ioche	emistr	y"-Pe	arson	Educatio	n Pub, (2000).
2.	Keith	Wils	on, "	Pract	ical B	lioche	emist	ry" C	ambi	ridge I	Jnive	rsity P	ub, (2003	3).	
3.	Patta	bhira	man	, "Pra	actica	l Bio	chem	istry'	,						
4.	Beed	uSasł	nidha	irRao	and	Vijay	Desh	panc	le, "E	xperir	nenta	I Bioc	hemistry	" -I.K.Int	tl
5.	Plum	mer [О. Т "	'Prac	tical E	Bioch	emis	try" -	тмн	Pub.,	1988				
						LEAF	RNIN	G OB.	JECTI	VES					
						CO	URSE	OUT	COM	IES					
1.	Abilit	y to u	unde	rstan	d the	basi	c asp	ects o	of sta	ndard	l reag	ent &	buffer pr	eparatio	ons.
2.	Abilit	y to i	dent	ify va	rious	bion	nolec	ules	qualit	tativel	у.				
3.	Abilit	y to e	estim	ate t	he co	ncen	tratio	on of	carbo	ohydr	ates ir	n a giv	ven samp	le	
4.	Abilit	y to e	evalu	ate t	he co	ncen	tratio	on of	amin	o acid	l quan	titativ	vely.		
5.	Abilit	y to a	analy	ze th	e typ	es of	lipid	s.							
6.	Abilit	y to a	apply	' knov	wledg	ge of	acid a	& iod	ine v	alue to	o dete	ermine	e the qua	lity of li	oids.
	1												r		
Course					Progr	amm	ne Ou	tcom	les				Progra	mme Sp	ecific
Outcomes													0	utcome	S
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	1	2	3	2			3	3				3	2	3	1
CO 2	2	3	3	2			2	3				3	2	3	1
CO 3	2	3	3	3		3	2	2				2	2	1	2
CO 4	3	3	3	2		2	2	2				2	3	1	1
CO 5	2	2	2	2		1	2	2				3	3	2	1

SUBJECT CODE:22UBT306C		Credits: 02
L: T: P - 2: 0: 0	CELL CULTURE TECHNIQUES	CIE Marks: 50
Total Hours/Week: 26		SEE Marks: 50
	UNIT – 1	8 Hrs.
Plant cell culture:		
History and introduction, re	quirements, lab organisation, media con	nstituents, choice of media
sterilization of media, expla	ant selection, sterilisation and preparati	ion for inoculation, role of
growth hormones in ce	ell culture.Cellular totipotency, cytoo	differentition, organogenic
differentiation, somatic emb	pryogenesis. Plant growth hormones - au	uxins, gibberlins, cytokinins.
Stoichometry of cell growth a	and product formation.	
	UNIT – 2	6 Hrs.
Culture techniques and appl	ications:	
Protoplast culture, somatic	hybridization, haploid production, mic	cro propagation, somaclonal
variation, crop improvemen	t, hairy root culture, synthetic seeds.	Regeneration of plantlets-
shooting, rooting and harden	ing.	
	UNIT – 3	6 Hrs.
Animal cell culture Techniqu	es	
History and development of i	mammalian cell culture. lab layout and eq	uipments, cell culture media
(Natural and Artificial) - con	nponents of the medium, functions of m	iedia components. Role of
antibiotics in media. Types	of primary culture, establishment of pr	imary culture, cell lines –
mechanical and enzymatic	mode of desegregation. Subculture - p	assage number, split ratio,
seeding efficiency, criteria for		C Hree
Coll line Characterization and	UNII – 4	о нгз.
Monsurament of Coll viabilit	y and Cutatovicity accay. MTT LDH dah	vdrogonaca Dvo ovelucion
and inclusion tosts, clonoro	pic assay Characterization Coll line con	staminations detection and
control Stem cells & their an	nications	
	REFERENCES	
1 Culture of Animal ce	lls-3 rd Edition-B JanEreshney Wiley Less 20	10
2. Introduction to Pla	nt biotechnology by H. S. Chawla, 2 ⁿ	^d Edition. Oxford and IBH
Publishers, 2010		
3 Biotech Expanding H	orizons-B. D. Singh. Kalvani Publishers.20)10.
4 Bruce Alberts Alexa	ander Johnson Julian Lewis Martin Raf	f Keith Roberts and Peter
Walter Molecular bio	blogy of The Cell. GS publishers.2002	
	LEARNING OBJECTIVES	
1. To use the plant cells	to produce in vitro cultures	
2. To comprehend the ap	plications of plant tissue culture technique	es in various fields
3. To acquire working k	nowledge of culture of animal cells in in vi	itro conditions.
4. To identify, describe a	and classify the contaminants of cell cultur	e and preservation
techniques		

- 1. To use the plant cells to produce in vitro cultures
- 2. To comprehend the applications of plant tissue culture techniques in various fields
- 3. To acquire working knowledge of culture of animal cells in *in vitro* conditions.
- 4. To identify, and classify the cell culture techniques

Course					Pro	Programme Specific									
Outcomes						(Dutcome	S							
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3												1	1	1
CO 2	1				3									2	2
CO 3	1				3			1			1		3	3	
CO 4	3				3									3	

CI NI-		Subject Name	Credits	Н	our	s	Examination Marks			
SINO	Subject Code			L	Т	Ρ	CIE	SEE	Total	
1	22UBT516C	Bioprocess & Reaction Engineering	3	3	0	0	50	50	100	
2	22UBT519C	Genetic Engineering & Applications	3	3	0	0	50	50	100	
3	22UBT520C	Fundamentals of Bioinformatics	3	2	2	0	50	50	100	
4	22UBT52XE	Elective-I	3	3	0	0	50	50	100	
5	22UBT506H	Industrial Safety and Bioethics	3	3	0	0	50	50	100	
6	22UBT514L	Bioinformatics Lab	1	0	0	2	50	50	100	
7	22UBT515L	Genetic Engineering Lab	1	0	0	2	50	50	100	
8	22UCS559L	Advanced C Programming Lab	2	0	0	2	50	50	100	
9	22UHS002N	Advance Quantitative Aptitude and Soft Skills	1	2	0	0	50	50	100	
10	22UXX5XXN	Open Elective-I	3	3	0	0	50	50	100	
	•	Total	23	19	2	6	500	500	1000	

V-Semester-2022-23

Elective-I

UBT521E: Environmental BT

UBT522E: Biomedical Instrumentation

UBT525E: Stem cell technology

UBT527E: Nutraceuticals

Subject Code: 22UBT516C		Credits: (3	3: 0: 0)
L: T: P – 3-0-0	BIOPROCESS & REACTION ENGINEERING	CIE Marks	s: 50
Total Hours/Week: 40		SEE Marks	s: 50
	UNIT-I		10 Hrs.
Kinetics of Homogeneous reac	tions		
Basic Concepts of Bioreactor a	nd bioprocess engineering, Concentration d	lependent terr	n of a rate
equation. Rate Constant. Repr	resentation of elementary reaction and No	on elementary	reactions,
Kinetic Models of Non eleme	entary Reactions, Testing Kinetic Models.	Temperature-	dependent
term of a rate equation: Temp	erature dependency from Arrhenius law, Co	ollision theory,	Transition
state theory, Thermodynamic a	approach, Activation Energy.		
	UNIT–II		10Hrs.
Interpretation of Batch Biorea	ctor Data		
Constant volume batch reactor	r, Integral method of analysis of data -first o	order, second o	order, zero
order reactions, fractional life	e, homogenous catalyzed reactions, irrever	rsible reaction	in series,
irreversible reactions in paral	lel, reactions of shifting order, autocataly	tic reactions,	reversible
reactions, differential method of	of analysis of data and numerical.		
			10 Hrs
Introduction to Reaction Desig Introduction. Factors to be c equation, relation between Cc	onsider for designing a reactor, Types of poncentration and conversion, Performance	f reactors, Ba equation for i	usic design deal batch
Introduction to Reaction Desig Introduction. Factors to be c equation, relation between Co reactor, MFR/CSTR and PFR, reactors and numerical.	onn-in consider for designing a reactor, Types of oncentration and conversion, Performance space time and space velocity for flow r	f reactors, Ba equation for i reactors, desig	deal batch
Introduction to Reaction Desig Introduction. Factors to be c equation, relation between Co reactor, MFR/CSTR and PFR, reactors and numerical.	n consider for designing a reactor, Types of procentration and conversion, Performance space time and space velocity for flow r UNIT-IV	f reactors, Ba equation for in reactors, desig	usic design deal batch gn of flow 10 Hrs.
Introduction to Reaction Desig Introduction. Factors to be c equation, relation between Co reactor, MFR/CSTR and PFR, reactors and numerical. Design for single reactions Introduction .Size comparison CSTR in parallel .PFR in series, i	n consider for designing a reactor, Types of oncentration and conversion, Performance space time and space velocity for flow r UNIT–IV of single reactors, multiple reactors CSTR i n parallel, Reactors of different types in serie REFERENCE BOOKS	f reactors, Ba equation for in reactors, desig in series /MFF es, and numeri	10 ms. deal batch gn of flow 10 Hrs. R in series, ical.
Introduction to Reaction Desig Introduction. Factors to be c equation, relation between Co reactor, MFR/CSTR and PFR, reactors and numerical. Design for single reactions Introduction .Size comparison CSTR in parallel .PFR in series, i 1. Scott Fogler, H (2016)	INTERIN INTERIN Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solutio	f reactors, Ba equation for in reactors, desig in series /MFF es, and numering g, 6 th edn., Pro	10 ms. Isic design deal batch gn of flow 10 Hrs. R in series, ical.
Introduction to Reaction Desig Introduction. Factors to be c equation, relation between Co reactor, MFR/CSTR and PFR, reactors and numerical. Design for single reactions Introduction .Size comparison CSTR in parallel .PFR in series, i 1. Scott Fogler, H (2016) India Pvt. Ltd.	CNIT-III consider for designing a reactor, Types of procentration and conversion, Performance space time and space velocity for flow r UNIT-IV of single reactors, multiple reactors CSTR is n parallel, Reactors of different types in series REFERENCE BOOKS Elements of Chemical Reaction Engineering	f reactors, Ba equation for in reactors, design in series /MFF es, and numering g, 6 th edn., Pro	10 Hrs. deal batch gn of flow 10 Hrs. R in series, ical. entice Hal
Introduction to Reaction Desig Introduction. Factors to be c equation, relation between Co reactor, MFR/CSTR and PFR, reactors and numerical. Design for single reactions Introduction .Size comparison CSTR in parallel .PFR in series, i 1. Scott Fogler, H (2016) India Pvt. Ltd. 2. Levenspiel O (2006) Che 2. Karri and Shular (2015)	phonometric constraints of the second secon	f reactors, Ba equation for in reactors, design in series /MFF es, and numering g, 6 th edn., Pro 3rd edn, New 1	10 Hrs. deal batch gn of flow 10 Hrs. R in series, ical. entice Hal Delhi.
Introduction to Reaction Desig Introduction. Factors to be c equation, relation between Co reactor, MFR/CSTR and PFR, reactors and numerical. Design for single reactions Introduction .Size comparison CSTR in parallel .PFR in series, i 1. Scott Fogler, H (2016) India Pvt. Ltd. 2. Levenspiel O (2006) Che 3. Kargi and Shuler (2015) 4. Pailoul and Ollis DE (2015)	consider for designing a reactor, Types of consider for designing a reactor, Types of concentration and conversion, Performance is space time and space velocity for flow r UNIT-IV of single reactors, multiple reactors CSTR is n parallel, Reactors of different types in series REFERENCE BOOKS Elements of Chemical Reaction Engineering emical Reaction Engineering, Wiley Eastern, Series Dioprocess Engineering, 3nd edn., Prentice I 010) Ricchemical Engineering Eundamentals	f reactors, Ba equation for in reactors, design in series /MFF es, and numering g, 6 th edn., Pro 3rd edn, New I Hall PTR.	10 ms. asic design deal batch gn of flow 10 Hrs. R in series, ical. entice Hal Delhi.
Introduction to Reaction Desig Introduction. Factors to be c equation, relation between Co reactor, MFR/CSTR and PFR, reactors and numerical. Design for single reactions Introduction .Size comparison CSTR in parallel .PFR in series, i 1. Scott Fogler, H (2016) India Pvt. Ltd. 2. Levenspiel O (2006) Che 3. Kargi and Shuler (2015) 4. BaileyJE and Ollis DF (20 5. Charlos D. Holland (199	gn consider for designing a reactor, Types of oncentration and conversion, Performance is space time and space velocity for flow r UNIT-IV of single reactors, multiple reactors CSTR is n parallel, Reactors of different types in series REFERENCE BOOKS Elements of Chemical Reaction Engineering, Wiley Eastern, Semical Reaction Engineering, 3nd edn., Prentice ID10) Biochemical Engineering Fundamentals, poly Euglamontals of Chemical Reaction Engineering Fundamentals, poly Euglamontals, poly Euglam	f reactors, Ba equation for in reactors, design in series /MFF es, and numering g, 6 th edn., Pro 3rd edn, New I Hall PTR. , 2nd edn. Mc	10 Hrs. Isic design deal batch gn of flow 10 Hrs. R in series, ical. entice Hal Delhi. Graw- Hill.
Introduction to Reaction Desig Introduction. Factors to be c equation, relation between Co reactor, MFR/CSTR and PFR, reactors and numerical. Design for single reactions Introduction .Size comparison CSTR in parallel .PFR in series, i 1. Scott Fogler, H (2016) India Pvt. Ltd. 2. Levenspiel O (2006) Che 3. Kargi and Shuler (2015) 4. BaileyJE and Ollis DF (20 5. Charles D. Holland (199	gn consider for designing a reactor, Types of oncentration and conversion, Performance is space time and space velocity for flow r UNIT-IV of single reactors, multiple reactors CSTR is n parallel, Reactors of different types in series REFERENCE BOOKS Elements of Chemical Reaction Engineering, Wiley Eastern, Spioprocess Engineering, 3nd edn., Prentice ID10) Biochemical Engineering Fundamentals, 20) Fundamentals of Chemical Reaction Engineering Fundamentals	f reactors, Ba equation for in reactors, desig in series /MFF es, and numering g, 6 th edn., Pro 3rd edn, New I Hall PTR. , 2nd edn. Mco ineering, John	10 Hrs. Isic design deal batch gn of flow 10 Hrs. R in series, ical. entice Hal Delhi. Graw- Hill. Wiley and
Introduction to Reaction Desig Introduction. Factors to be c equation, relation between Co reactor, MFR/CSTR and PFR, reactors and numerical. Design for single reactions Introduction .Size comparison CSTR in parallel .PFR in series, i 1. Scott Fogler, H (2016) India Pvt. Ltd. 2. Levenspiel O (2006) Che 3. Kargi and Shuler (2015) 4. BaileyJE and Ollis DF (20 5. Charles D. Holland (199 Sons. 6. Pauline M Doran., Biop	gn consider for designing a reactor, Types of oncentration and conversion, Performance is space time and space velocity for flow r UNIT-IV of single reactors, multiple reactors CSTR is n parallel, Reactors of different types in series REFERENCE BOOKS Elements of Chemical Reaction Engineering, Wiley Eastern, S Bioprocess Engineering. 3nd edn., Prentice ID10) Biochemical Engineering Fundamentals, process Engineering Principles, 2nd Editior	f reactors, Ba equation for in reactors, design in series /MFF es, and numering g, 6 th edn., Pro 3rd edn, New I Hall PTR. , 2nd edn. Mc ineering, John	10 ms. asic design deal batch gn of flow 10 Hrs. R in series, ical. entice Hal Delhi. Graw- Hill. Wiley and Press, USA,
Introduction to Reaction Desig Introduction. Factors to be c equation, relation between Co reactor, MFR/CSTR and PFR, reactors and numerical. Design for single reactions Introduction .Size comparison CSTR in parallel .PFR in series, i 1. Scott Fogler, H (2016) India Pvt. Ltd. 2. Levenspiel O (2006) Che 3. Kargi and Shuler (2015) 4. BaileyJE and Ollis DF (20 5. Charles D. Holland (199 Sons. 6. Pauline M Doran., Bioj 2013.	gn consider for designing a reactor, Types of oncentration and conversion, Performance is space time and space velocity for flow r UNIT-IV of single reactors, multiple reactors CSTR is n parallel, Reactors of different types in series REFERENCE BOOKS Elements of Chemical Reaction Engineering, Wiley Eastern, Semical Reaction Engineering, Wiley Eastern, Semical Reaction Engineering, Sind edn., Prentice ID10) Biochemical Engineering Fundamentals, p0) Fundamentals of Chemical Reaction Engineering Fundamentals, process Engineering Principles, 2nd Edition	f reactors, Ba equation for in reactors, desig in series /MFF es, and numering g, 6 th edn., Pro 3rd edn, New I Hall PTR. , 2nd edn. Mc ineering, John n, Academic P	IOTIIS. Isic design deal batch gn of flow IOHrs. R in series, ical. entice Hal Delhi. Graw- Hill. Wiley and Press, USA,
Introduction to Reaction Desig Introduction. Factors to be c equation, relation between Co reactor, MFR/CSTR and PFR, reactors and numerical. Design for single reactions Introduction .Size comparison CSTR in parallel .PFR in series, i 1. Scott Fogler, H (2016) India Pvt. Ltd. 2. Levenspiel O (2006) Che 3. Kargi and Shuler (2015) 4. BaileyJE and Ollis DF (20 5. Charles D. Holland (199 Sons. 6. Pauline M Doran., Biop 2013. 7. Tapobrata Panda., Biore	CNIT-III CNIT-III CONT-III CONT-III CONT-III CONT-III CONT-III CONT-III CONT-III CONT-III CONT-IV CONT-IV OF single reactors, multiple reactors CSTR is CONT-IV OF single reactors, multiple reactors CSTR is CONT-IV CONT-IV OF single reactors, multiple reactors CSTR is CONT-IV CONT-IV OF single reactors, multiple reactors CSTR is CONT-IV OF single reactors, multiple reactors CSTR is CONT-IV CONT-IV OF single reactors, multiple reactors CSTR is CONT-IV OF single reactors of different types in series REFERENCE BOOKS E E E E E E C <p< th=""><td>f reactors, Ba equation for in reactors, design in series /MFF es, and numering g, 6th edn., Pro 3rd edn, New I Hall PTR. , 2nd edn. Mc ineering, John n, Academic P ta McGraw Hill</td><td>10 ms. asic design deal batch gn of flow 10 Hrs. R in series, ical. entice Hall Delhi. Graw- Hill. Wiley and Press, USA, Education</td></p<>	f reactors, Ba equation for in reactors, design in series /MFF es, and numering g, 6 th edn., Pro 3rd edn, New I Hall PTR. , 2nd edn. Mc ineering, John n, Academic P ta McGraw Hill	10 ms. asic design deal batch gn of flow 10 Hrs. R in series, ical. entice Hall Delhi. Graw- Hill. Wiley and Press, USA, Education
Introduction to Reaction Desig Introduction. Factors to be consequation, relation between Consector, MFR/CSTR and PFR, reactors and numerical. Design for single reactions Introduction .Size comparison CSTR in parallel .PFR in series, i 1. Scott Fogler, H (2016) India Pvt. Ltd. 2. Levenspiel O (2006) Checonstantiation Kargi and Shuler (2015) 4. BaileyJE and Ollis DF (2015) 4. BaileyJE and Ollis DF (2015) 5. Charles D. Holland (1999) Sons. 6. Pauline M Doran., Biop 2013. 7. Tapobrata Panda., Biopere Private Limited, New Design	CNIT-III consider for designing a reactor, Types of concentration and conversion, Performance space time and space velocity for flow r UNIT-IV of single reactors, multiple reactors CSTR is n parallel, Reactors of different types in serie REFERENCE BOOKS Elements of Chemical Reaction Engineering emical Reaction Engineering, Wiley Eastern, S Bioprocess Engineering. 3nd edn., Prentice I 010) Biochemical Engineering Fundamentals, 00) Fundamentals of Chemical Reaction Engineering process Engineering Principles, 2nd Edition eactors: Analysis and Design, 1st Edition, Tat elhi, 2011.	f reactors, Ba equation for in reactors, design in series /MFF es, and numering g, 6 th edn., Pro 3rd edn, New I Hall PTR. , 2nd edn. Mc ineering, John n, Academic P ca McGraw Hill	IOTIIS. Isic design deal batch gn of flow IOHrs. R in series, ical. entice Hall Delhi. Graw- Hill. Wiley and Press, USA, Education

- 1 To Understand the basic concept of reaction engineering
- 2 To calculate the order and rate of reaction
- 3 To categorize the batch reactor data for different reactions
- 4 To decide the suitable bioreactor for different reactor
- 5 To Demonstrate the RTD to calculate the conversion
- 6 To Evaluate the bioreactor for various purposes

- 1. Understand the basic concept of reaction engineering.
- 2. Predict the order and rate of the different reactions.
- 3. Analyze the batch bioreactor data for different reactions.
- 4. Design the suitable bioreactor for different biochemical reactions.
- 5. Predict the residence time distribution to determine the conversion in non ideal flow reactors
- 6. Analyze bioreactors for various cell cultures.

Course				Programme Specific											
Outcomes				C	Outcomes										
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	3	2	2	2							1	2		
CO 2	3	2	2	2	1							1	2		
CO 3	2	3	2	1	2							1	2		
CO 4	2	3	3	2	1							1	2		
CO 5	3	1	2	1	2							1	2		
CO 6	2	2	2	2	1							1	2		

Subject Code:22UBT519C

GENETIC ENGINEERING & APPLICATIONS

L: T: P - 3-0-0 Total Hours/Week: 40

UNIT-I

10 Hrs.

Introduction

Tools of genetic engineering- vectors in recombinant DNA technology, biology and salient features of vectors, Types of vectors - plasmids, cosmids, bacteriophage lambda vectors.

Enzymes in genetic engineering:

Introduction- Restriction Endonucleases-classification, mode of action, applications. Enzymes used in nucleic acid modification – Alkaline phosphatase, polynucleotide Kinase, Ligases, terminal deoxy nucleotidyl transferase

UNIT-II

10Hrs.

10 Hrs.

10 Hrs.

Nucleic acid hybridization and amplification

Methods of nucleic acid detection, Fluorescent In situ hybridization (FISH), colony hybridization, polymerase chain reaction (PCR), its types and applications, methods of nucleic acid hybridization, Southern, Western and Northern hybridization techniques.

Construction of cDNA libraries:

Construction of Complementary DNA (cDNA), genomic DNA libraries and cDNA libraries.

UNIT-III

Gene transfer techniques

Gene transfer techniques in plants, animals and microbes –Transformation, microinjection, electroporation, microprojectile system, and liposome mediated transfer, embryonic stem cell method. Agrobacterium-mediated gene transfer in plants – Ti & Ri Plasmid: structure and functions, Ti based vectors- Binary vectors and Cointegrate vectors.

Transgenic science and genetic improvement:

Transgenic science in plant improvement, Antisense RNA technology (Flavr savr tomatoes). Application of plant transformation for productivity and performance – Herbicide resistance glyphosate. insect resistance - Bt genes(*Bacillus thuringiensis* and its mode of action), Cry proteins mechanism of action.

Gene therapy

Introduction, Methods of Gene therapy-gene targeting, gene augmentation, assisted killing, prodrug therapy and gene silencing. Gene therapy in the treatment of cancer, SCID, muscular dystrophy. Use of thrombolytic agents in blood clotting. Challenges in gene therapy. Applications:

UNIT-IV

Engineering microbes for the production of Insulin, growth hormones, monoclonal antibodies.

REFERENCE BOOKS

- 1. Molecular Biotechnology, Principles and applications of Recombinant DNA by Bernard R Glick and Jack J Pasternak, second edition, CBS Publishers, 2012.
- 2. Recombinant DNA by Watson, et al., second edition, Freeman Publishers 2010.
- 3. Principles of gene manipulation, Primrose S.B., Blackwell Scientific Publications, 2010.

- From Genetics to Gene Therapy the molecular pathology of human disease by David S Latchman, BIOS scientific publishers, 2010.
- 5. Biotechnology Expanding Horizon, B.D.Singh, 3rd revised edition, Kalyani Publishers, 2010
- 6. NPTEL Source material

LEARNING OBJECTIVES

- 1. Emphasize on the basic aspects of genetic engineering; the key areas and apply the knowledge in vectors used in genetic engineering experiments.
- 2. Apply the properties of various enzymes and vectors in gene and genome manipulation.
- 3. Acquire working knowledge on the mechanism of methods of nucleic acid detection, hybridization and amplification and their applications in the research.
- 4. Acquire working knowledge on the construction of genomic and cDNA libraries their applications in the research and biology of *Bacillus thuringiensis*.
- 5. Identify the various gene transfer techniques in plants, animals and microbes that are essential for controlled protein production in the industry and acquire knowledge on various strategies of Gene therapy and its application in therapeutics.
- Identify and apply the current applications and advances of biotechnology and describe the steps involved in the production of biopharmaceuticals in microbial systems and industrial utilization.

Course Outcomes				I	Progr	amm	e Ou	tcom	es				Prog	ramme S Outcom	Specific es
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	1	1	1	2						1		2	1	2	3
CO 2	1			2	3							2	1	2	3
CO 3		1		2								2	1	2	1
CO 4		1		2								2	1	2	1
CO 5		1	1	2	3	3		3				2	1	2	1
CO 6		1	1	2	3	2	2	3				2	1	2	1

Subject
Code:22UBT520C

CIE Marks: 50 SEE Marks: 50

L: T: P – 2-2-0 Total Hours/Week: 40

UNIT-I

12 Hrs.

Introduction to Bioinformatics and Biological Database

Introduction to bioinformatics, Components of bioinformatics and interdisciplinary nature of bioinformatics, Classification of biological databases; Primary database: NCBI, GenBank, DDBJ and EMBL, PIR, Uniprot; Secondary databases: PROSITE, PRINTS, BLOCKS and Pfam; Structure databases: Protein Data Bank (PDB), MMDB, CATH, SCOP; Specialized databases: PubMed, OMIM, Metabolic Pathway-KEGG;ExPasy and PubChem databases, File format: GenBank flat file, PDB flat file. Tutorials: Practices on other primary and secondary databases

UNIT–II

10 Hrs.

Sequence alignment and database searches:

Introduction, Types of sequence alignment, Comparison between global and local alignment, Pairwise sequence alignment: Dot matrix analysis, Dynamic programming, Global alignment-Needleman-Wunch algorithm, Local Alignment-Smith & Waterman algorithm, Substitution matrix- BLOSUM and PAM; GAP Penalty; Low complexity regions;Word/k-tuple method- BLAST, FASTA.

Multiple Sequence Alignment:Introduction, applications of MSA; Types of MSA: Progressive method of MSA-Clustal W; Iterative method of MSA; Motifs and Patterns; Statistical models of MSA-Position Specific Scoring Matrix (PSSM) and Profiles.

Tutorials: Solving problems on pairwise sequence alignment

UNIT-III

10 Hrs.

Phylogenetic analysis and predictive methods using sequences

Introduction, concepts of trees, types of evolutionary trees, Rooted and unrooted trees, Steps in constructing phylogenetic trees, Tree building methods - Distance based methods: Neighbor Joining (NJ) method, Fitch-Margoliash (FM) method; Character based method: Maximum parsimony; Tree Evaluation methods, Phylogenetic Softwares.

Predictive Methods using sequences: Structure of Prokaryote and Eukaryote genes; Algorithms for Prokaryotic and Eukaryotic gene prediction, Web based tools for gene prediction (ORF finder, GenScan).Protein Secondary Structure Prediction, Tertiary Structure Predictions: Homology modelling.

Tutorials: Practices on prediction of phylogenetic trees

UNIT–IV	10 Hrs.
Plasmid mapping and primer designing &molecular modelling techniques Restriction mapping, Web based tools: Restriction Mapper and REBASE. Utilities of Mac V Vector NTI; Basics of Primer designing, Primer design softwares (PRIME3). Rational App Drug Design, molecular docking, deriving the Pharmacophoric Pattern, quantitative structu relationship (QSAR), deriving bioactive conformations, Calculation of Properties,Dockingsoftwares (AUTODOCK, HEX) Tutorials: Solving problems related to Restriction mapping and Primer designing	Vector and proaches in ure-activity Molecular
Reference Books *	
 Introduction to Bioinformatics – Arthur Lesk, Oxford, 2nd Edition,2006. Bioinformatics – Stuart M Brown, NYU Medical Center, NY USA. 2000. Fundamental Concepts of Bioinformatics – D E Krane & M L Raymer, Pearson, 2006. Computational methods for macromolecular sequence analysis – R F Doolittle. Press, 1996. 	Academic
Course Outcomes**	
After completion of the course student will be able to	
 Importance of databases involved in bioinformatics along with their file formats Will have idea on searching similar sequences in databases and find similarity betw set of sequences Derive evolutionary relationship between genes and proteins by phylo-genetic analy Explain various statistical tools involved in predicting the structure of genes and proteins The principle behind restriction mapping and primer designing Different approaches involved in silico drug design 	ween given ysis teins

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course				r	Drog	Programme Specific									
Outcomes				r	log	laiii		Outcomes							
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	2	-	-	2	1	2	2				3	2	2	3
CO 2	3	2	2	2	2	1	2	-				3	2	2	3
CO 3	3	2	-	1	-	-	2	-				3	2	2	3
CO 4	2	2	-	1	-	2	-	-				3	1	-	2

CO 5	2	2	2	1	-	2	-	2		1	2	-	2
CO 6	2	1	2	2	2	2	1	1		1	1	1	1

Subject Code:UBT527E		3 Credits: (3-0-0)
L: T: P – 3-0-0	NUTRACEUTICALS	CIE Marks: 50
Total Hours/Week: 40		SEE Marks: 50

UNIT-I

Introduction to Nutraceutical and dietetics

Organizational elements, classification of nutraceuticals, dietary supplements, fortified foods, functional foods and phytonutraceuticals. Scope involved in the industry, Indian and global scenario. Recommended dietary intake (RDA), acceptable dietary intake, nitrogen balance, protein efficiency ratio, net protein utilisation. Basics of energy balance - Basal Metabolic Rate (BMR), Body Mass Index (BMI) and Standard Dynamic Action (SDA) with special reference to nutraceutical industry.

UNIT-II

Nutrition related diseases and disorders

Carbohydrates, Protein, amino acids, Fat, vitamins and minerals - Excess and deficiency, symptoms, prevention and management. Role of nutraceuticals with special reference to diabetes mellitus, hypertension, hypercholesterolemia, cancer, glands in the prevention and treatment. Concept of antioxidants - use of antioxidants as dietary supplements in prevention and treatment of cancer, obesity and stress. Role of nutraceuticals and functional foods in pediatrics, geriatrics, sports, pregnancy and lactation.

UNIT-III

Nutraceuticals of microbial, plant and animal origin

Concept of prebiotics and probiotics - principle, mechanism, production and technology involved, applications - examples of bacteria used as probiotics, use of prebiotics in maintaining the useful microflora - extraction from plant sources. Synbiotics for maintaining good health.Algae as source of omega - 3 fatty acids, antioxidants and minerals - extraction and enrichment. Plant secondary metabolites, classification and sub-classification - Alkaloids, phenols, Terpenoids. Animal metabolites - Sources and extraction of nutraceuticals of animal origin. Examples: chitin, chitosan, glucosamine, chondroitin sulphate and other polysaccharides

UNIT-IV

10 Hrs.

Biotechnology in Phytonutraceuticals

Role of medicinal and aromatic plants in nutraceutical industry – propagation - conventional and tissue culture, cultivation, post harvest technology and strategies for crop improvement, development of high yielding lines and yield enhancement, plant genomics and metabolomics. Biofortification and nutritional enhancement.GM foods with enhanced nutraceutical properties.Golden rice, GM Tomatoes

REFERENCE BOOKS

- 6. Israel Goldberg (Ed.) (1999) Functional foods, designer foods, pharma foods, Nutraceuticals, Aspen publishers Inc., USA.
- 7. L. Rapport and B. Lockwood, Nutraceuticals, Pharmaceutical Press., 2nd Edition, 2002.
- 8. M. Maffei , Dietary Supplements of Plant Origin, Taylor & Francis, 1 st Edition, 2003.

10 Hrs.

10Hrs.

10 Hrs.

- 9. Shahidi and Weerasinghe, Nutraceutical beverages Chemistry, Nutrition and health Effects, American Chemical Society,1 st Edition, 2004.
- 10. Richard Neeser& J. Bruce German (2004) Bioprocesses and Biotechnology for Functional Foods and Nutraceuticals, Jean, Marcel Dekker, Inc.
- 11. TimothtS. Tracy, Richard L. Kingston, Herbal Products 2nd Edition, 2007.

LEARNING OBJECTIVES

- 1. To be aware of basic concepts of nutraceuticals and nutrition.
- 2. To have a general idea of scope of nutraceuticals and functional foods.
- 3. To have brief idea about nutrition related health disorders and the role of Nutraceuticals.
- 4. To classify nutraceuticals and the role of nutraceuticals among different age groups.
- 5. To learn about the basic aspects of nutraceuticals derived from microbial, plant and animal origin.
- 6. To know about the role of biotechnology in production of plant secondary metabolites

Course Outcomes				F	Prog	ram	me (Dutc	ome	S			Prog	ramme Sp Outcomes	ecific S
	1	2 3 4 5 6 7 8 9 10 11 1											PSO1	PSO2	PSO3
CO 1	3	3 2 - - 2 1 2 2 3									2	2	3		
CO 2	3	3 2 2 2 2 1 2 - 3						3	2	2	3				
CO 3	3	2	-	1	-	-	2	-				3	2	2	3
CO 4	2	2	-	1	-	2	-	-				3	1	-	2
CO 5	2	2	2	1	-	2	-	2				1	2	-	2
CO 6	2	2 1 2 2 2 2 1 1								1	1	1	1		

Sub	ject Code:22UBT506H		Cre	dits: (3: 0: 0)
	L: T: P – 3-0-0	INDUSTRIAL SAFETY & BIOETHICS	CIE	Marks: 50
-	Total Hours/Week: 40		SEE	E Marks: 50
		UNIT-I		10 Hrs.
Introduc	ction to Bioethics & Biosa	fety:		
Definitio	on and scope of bioethics	and biosafety, Ethical implications and need fo	or biosaf	ety, Legal and Socio-
Econom	ic impacts of Biotechno	ology. Convention on biological weapons. B	Bioterro	rism-classification of
biologica	al agents with examples.			
Biosafet	ty regulation guidelines			
Recomb	inant DNA Advisory Com	mittee (RDAC) ,Institutional Biosafety committee	e(IBC),R	eview Committee on
Genetic	Modification (RCGM),Ger	netic Engineering Approval Committee(GEAC), B	Biosafety	y guidelines- national
guidelin	es, Cartagena Protocol on	Biosafety.		
		UNIT–II		10Hrs.
Biosafet	ty Regulation:			
Genetica	ally modified organisms a	nd their release in environment, Laboratory ass	ociated	infections and other
hazards,	, Good Lab Practices	and Good Manufacturing Process (GLP &G	GMP).	Biosafety levels for
microor	ganismBL1,BL2,BL3,BL4) p	olants (BL1-P,BL2-P,BL3-P,BL4-P) animals (BL1-N,	BL2-N,E	3L3-N,BL4-N).
Risk as:	sessment during laborato	ory research and risk groups. Recombinant orga	anisms a	and transgenic crops.
Guidelin	ne for labeling GM crops	5. Containments; Physical, Biological. Field tria	l meth	ods using transgenic
plants.				10 Што
Food on	d Dharma cafatu			10 113.
	iu Pharma salety:	for bistoch foods and Dharman anadusts. Draw		a analy national Conv
Biosaret right Pla	y assessment procedures ant Breeder's Right Envir	onmental aspects of biotech applications. Speci	edure to al annli	o apply patent, Copy
in bioted	chnology and case studies	s. Flavr Savr Tomato as model case, case studies	s of rele	evance (Eg. Bt cotton.
Bt brinja	al). Licensing and cross lice	ensing.		
		UNIT-IV		10 Hrs.
Industria	al safety			
Need for	r safety, importance of oc	cupational safety, Health and safety programs, S	afe and	unsafe conditions.
Acciden	ts: Accident preventive m	neasure, Measurement and control of safety pe	rformar	nce, 5E's for accident
preventi	ion Safety policy			
Fire: Fir	e extinguishers and fire ex	xits, extinguishing agents.		
Importa	ance of safety in food and	Pharma industry. Food safety, Biological, chem	nical and	d Physical Hazards-
HAACP s	system, Pharma safety. Fo	od and safety act. Injuries by industrial sector		
		REFERENCE BOOKS		
1. S	Sateesh M.K.(2012),Bioeth	ics and Biosafety, I.K.International Publication		
2. S	Singh P. D. (2010) Riotochn			
	Singh B.D.(2010), Biotechin	lology Expanding Horizon (3 rd revised edition), Ka	alyani Pi	ublishers.

Publishers..

LEARNING OBJECTIVES

- 1. Interpret ethical issues connected with BT and biosafety guidelines.
- 2. Use GLP and GMP at work place.
- 3. Identify biosafety assessment procedures and patent laws.
- 1. Use the safety measures at work place.

Course Outcomes				Prog	gram	nme	Out	com	nes (POs)			Prog Outc	ram Spe omes (F	ecific PSOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	2	1	-	-	3	-	3	-	-	-	-	-	-	3
CO2	-	-	-	1	2	3	-	-	-	-	-	1	-	2	-
CO3	1	-	2	-	-	3	-	-	-	-	-	1	-	2	3
CO4	-	1	-	2	-	3	-	-	1	-	-	-	-	-	2

L: T: P – 3-0-0	ENVIRONMENTAL BT	CIE Mark	ks: 50
Total Hours/Week: 40		SEE Mar	ks: 50
	UNIT-I		10 Hrs.
Microorganisms		6	
Issues and scope of Environ	mental BT. Characteristics of soil, microbial flora	of soil, intera	ctions
among soil microorganisms,	biogeochemical role of soil microorganisms.		
Bioaccumulation of Toxican	ts		.
Characteristics of Xenobio	otics, Relationship of Bioaccumulation with	Chemical	Structure,
measurement of bioaccumu	lation	cuing bioacci	iniulation,
	UNIT-II		12Hrs.
Biological Treatment of Wa	stewater		
Waste water characteristic	s BOD, COD, Primary & Secondary treatment	t, nano-filtra	tion, ulta-
filration and microfiltration.	Microbial removal of phosphorous and Nitroge	n, Nutrient r	emoval by
Biomass production Waste	water treatment of food processing industrie	es like sugar	factories,
vegetable oil industries no	tato processing industries, dairy industries, bev	verages indus	stries, and
vegetable on maastries, po			
distilleries.			
distilleries. Solid Waste Management			
distilleries. Solid Waste Management Basic aspects, general comp	osition of urban solid wastes, aerobic treatment	t, anaerobic t	reatment,
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid	osition of urban solid wastes, aerobic treatment waste management through Biotechnologica	t, anaerobic t al processes	reatment, involving
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic	oosition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules	t, anaerobic t Il processes	reatment, involving
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic	oosition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT-III	t, anaerobic t al processes	reatment, involving 10 Hrs.
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining	oosition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III	t, anaerobic t al processes	reatment, involving 10 Hrs.
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ	oosition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III bes, methods of bioleaching, Microbial recovery o	t, anaerobic t al processes of metal, pho	reatment, involving 10 Hrs. osphate,
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ petroleum.	oosition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III bes, methods of bioleaching, Microbial recovery o	t, anaerobic t al processes of metal, pho	reatment, involving 10 Hrs. osphate,
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation	oosition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III bes, methods of bioleaching, Microbial recovery o	t, anaerobic t al processes of metal, pho	reatment, involving 10 Hrs. osphate,
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedia Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, v	position of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III bes, methods of bioleaching, Microbial recovery of water and soil, Biomonitors of environment (Bioin	t, anaerobic t al processes of metal, pho ndicators),	reatment, involving 10 Hrs. osphate,
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedia Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, v Bioremediation using microl	position of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III bes, methods of bioleaching, Microbial recovery of water and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications.	t, anaerobic t al processes of metal, pho ndicators), Bio-stimulatio	reatment, involving 10 Hrs. osphate, on of
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedia Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, v Bioremediation using microbia	position of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III bes, methods of bioleaching, Microbial recovery of water and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications. al activities, Bio-augmentation.	t, anaerobic t al processes of metal, pho ndicators), Bio-stimulatio	reatment, involving 10 Hrs. osphate, on of
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedia Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, v Bioremediation using microl Naturally occurring microbia	position of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III bes, methods of bioleaching, Microbial recovery of water and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications. al activities, Bio-augmentation. UNIT–IV	t, anaerobic t al processes of metal, pho ndicators), Bio-stimulatio	reatment, involving 10 Hrs. osphate, on of 10 Hrs.
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedia Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, v Bioremediation using microl Naturally occurring microbia Biotechnology in Biodiversi	oosition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III bes, methods of bioleaching, Microbial recovery of water and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications. al activities, Bio-augmentation. UNIT–IV ty Conservation	t, anaerobic t al processes of metal, pho ndicators), Bio-stimulatio	reatment, involving 10 Hrs. osphate, on of 10 Hrs.
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, v Bioremediation using microbia Maturally occurring microbia Biotechnology in Biodiversity Value of biodiversity, threat	position of urban solid wastes, aerobic treatment waste management through Biotechnological cal wastes, MoEF rules UNIT–III bes, methods of bioleaching, Microbial recovery of water and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications. al activities, Bio-augmentation. UNIT–IV ty Conservation ats to biodiversity, Biosphere reserves and Eco	t, anaerobic t al processes of metal, pho ndicators), Bio-stimulatio osystem Con	reatment, involving 10 Hrs. osphate, on of 10 Hrs.
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedia Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, v Bioremediation using microl Naturally occurring microbia Biotechnology in Biodiversity Value of biodiversity, threat Approaches to Bioresource	position of urban solid wastes, aerobic treatment waste management through Biotechnological cal wastes, MoEF rules UNIT–III bes, methods of bioleaching, Microbial recovery of water and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications. al activities, Bio-augmentation. UNIT–IV ty Conservation ats to biodiversity, Biosphere reserves and Ec- conservation programme, Biotechnological pro	t, anaerobic t al processes of metal, pho ndicators), Bio-stimulatio osystem Con ocesses for bi	on of 10 Hrs. 10 Hrs. 10 Hrs. 10 Hrs.
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedia Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, v Bioremediation using microl Naturally occurring microbia Biotechnology in Biodiversity Value of biodiversity, threa Approaches to Bioresource assessment, BT in ex situ co	eosition of urban solid wastes, aerobic treatment waste management through Biotechnological cal wastes, MoEF rules UNIT–III bes, methods of bioleaching, Microbial recovery of water and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications. al activities, Bio-augmentation. UNIT–IV ty Conservation ats to biodiversity, Biosphere reserves and Eco conservation programme, Biotechnological pro	t, anaerobic t al processes of metal, pho ndicators), Bio-stimulatio osystem Con ocesses for bi lization of Bi	reatment, involving 10 Hrs. osphate, on of 10 Hrs. servation, oresource odiversity,
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedia Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, v Bioremediation using microl Naturally occurring microbia Biotechnology in Biodiversity Value of biodiversity, threat Approaches to Bioresource assessment, BT in ex situ co International initiatives for b	position of urban solid wastes, aerobic treatment waste management through Biotechnological cal wastes, MoEF rules UNIT–III bes, methods of bioleaching, Microbial recovery of water and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications. al activities, Bio-augmentation. UNIT–IV ty Conservation ats to biodiversity, Biosphere reserves and Ec- conservation programme, Biotechnological pro onservation of Biodiversity, BT and its role in util biodiversity management.	t, anaerobic t al processes of metal, pho ndicators), Bio-stimulatio osystem Con ocesses for bi lization of Bi	reatment, involving 10 Hrs. osphate, on of 10 Hrs. oservation, oresource odiversity,

Credits: (3: 0: 0)

Subject Code:22UBT521E

- 1. Environmental Biotechnology by Pradipta Kumar Mahopatra.
- 2. Text book of microbiology by R C Dubey and D K Maheshwari
- 3. Environmental Biotechnology by Foster C.F., John ware D.A., Ellis Horwood Limited, 1987.
- 4. Bioprocess Technology- fundamentals and applications, S O Enfors & L Hagstrom (1992), RIT,.
- 5. Comprehensive Biotechnology Vol. 1-4 : M.Y. Young (Eds.), Pergamon Press.
- 6. Industrial Microbiology : L.E. Casida, Willey Eastern Ltd., 1989.
- 7. Industrial Microbiology : Prescott & Dunn, CBS Publishers, 1987.
- 8. Biotechnology, Economic & Social Aspects : E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge.

LEARNING OBJECTIVES

- 1. Understand issues and scope of Environmental BT and concepts of Bioaccumulation.
- 2. Develop different treatment methods for waste water by using BT approach.
- 3. Develop different treatment methods for solid waste by using BT approach.
- 4. Apply the knowledge of bioleaching for metal recovery and bioremediation processes to remove environmental contaminants.
- 5. Understand the Value of biodiversity and threats to biodiversity.
- 6. Apply the knowledge of BT in biodiversity conservation.

Course													Program	me	Specific
Outcomes				I	Prog	ram	me (Dutc	ome	S			Outcom	es	
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	2	3 2 2 2 3 1										1	2	3	1
CO 2	2	3	2	1		1 2							3	3	1
CO 3	2	3	2	1		1 2							3	3	1
CO 4	1	3	2	3				2	2	3			2	3	
CO 5								2		3		3			
CO 6	1	1 3 2 2 2 2 2									1	3			

22UBT514L L: T: P – 0-0- 1

Total Hours/Week: 40

BIOINFORMATICS LABORATORY

CIE Marks: 50

SEE Marks: 50

LIST OF EXPERIMENTS

- 1. Bibliographic search from PUBMED, SCIRUS and MEDMINER
- 2. Sequence retrieval from Nucleic acid and Protein databases.
- 3. Sequence searches using BLAST Retrieval of homologs, paralogs, orthologs, and Xenologs
- 4. Pair wise comparison of sequences Analysis of parameters affecting alignment.
- 5. Multiple alignments of sequences and pattern determination using PROSITE
- 6. Evolutionary studies / Phylogenetic analysis Analysis of parameters affecting trees.
- 7. Identification of functional sites in Genes / Genomes.
- 8. Secondary structure prediction of proteins and comparison with PDB.
- 9. Restriction mapping: Analysis of maps for suitable molecular biology experiment.
- 10. Primer Design: Factors affecting primer design.
- 11. PDB structure retrieval and visualization: Analysis of homologous structures.
- $12. \ {\rm Determination} \ {\rm of} \ {\rm ligand-protein} \ {\rm interactions} \ {\rm using} \ {\rm SPDBV/} \ {\rm LIGPLOT}$
- 13. Superposition of structures Calculation of RMSD.
- 14. Docking studies Analysis of substrate / ligand binding using homologous structures.

REFERENCE BOOKS

- 1. Bioinformatics Andreas D Boxevanis. Wiley Interscience, 1998.
- 2. Bioinformatics David W Mount, cold spring harbor, 2001.
- 3. Bioinformatics A biologists guide to biocomputing and the internet. Stuart M brown,
- 4. Fundamental Concepts of Bioinformatics D E Krane & M L Raymer, Pearson, 2006.
- 5. Computational methods in Molecular Biology S.L.Salzberg, D B Searls, S Kasif, Elsevier, 1998.
- 6. Bioinformatics methods and applications: Genomics, proteomics and drug Discovery s c Rastogi, N. mendiratta & prastogi, phi, 2006.

- 1. Ability to Search literature and sequence databases
- 2. Ability to retrieve and search sequences from databases
- 3. Ability to align pair wise and multiple sequences
- 4. Ability to identify evolutionary and relationships and functional sites in genomes
- 5. Ability to evaluate primer designing and restriction mapping
- 6. Ability to docking and superimpose the structures

Course Outcomes				F	Progr	amn	ne Oi	utcoi	nes				Progr (amme Sp Outcome	ecific S
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3 3 3 - 3 1 - 3 3							3	3	1					
CO 2	3 3 3 - 3 1 3 3							3	2	3	1				

CO 3	3	3	2	2	3	1	1	-		3	3	3	1
CO 4	3	3	2	-	3	-	1	-		3	2	3	2
CO 5	3	3	2	1	3	1	-	2		3	3	3	2
CO 6	3	3	3	2	3	1	-	1		3	2	3	1

22UBT515L

GENETIC ENGINEERING LABORATORY

Credits: (0: 0: 2) CIE Marks: 50 SEE Marks: 50

L: T: P – 0-0- 1 Total Hours/Week: 40

LIST OF EXPERIMENTS 1. Transformation.-2. Blue white colony screening. 3. Thermal denaturation of DNA. 4. Restriction Digestion. 5. Ligation Experiment. 6. Southern Blotting – Agarose Gel Electrophoresis 7. Electroblotting and analysis. 8. SOP for PCR 9. SOP for Gel Documentation 10. SOP for UV-Spectrophotometer 11. SOP for Lyophilizer 12. PCR (Amplification with specific primers) **REFERENCE BOOKS** 1. Sadashiva and Manickam, "Biochemical Methods", 2nd Edition, New age international Publishers, 2017. 2. Sambrook & amp; Russell, "Molecular Cloning", Cold Spring Harber Lab, 3rd Edition, 2002. 3. Current protocols in molecular biology-Greena Publishing Associates, NY, 1988 COURSE OUTCOMES 1. To demonstrate proficiency in Transformation and screening of transformants. 2. To apply the knowledge of thermal denaturation to calculate Tm value. 3. To evaluate the functions of restriction digestion and Ligation on DNA. 4. To demonstrate proficiency in Electro-blotting and detection. 5. To demonstrate understanding of SOP and PCR. 6. To gain knowledge in common and advanced laboratory practices in Genetic engineering lab.

Course Outcomes				F	Progr	amn	ne O	utco	mes				Progr	amme Sp Outcomes	ecific s
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	3 3 3 - 3 1						3				3	3	3	1
CO 2	3 3 3 - 3 1 3 3							3	2	3	1				

CO 3	3	3	2	2	3	1	1	-		3	3	3	1
CO 4	3	3	2	-	3	-	1	-		3	2	3	2
CO 5	3	3	2	1	3	1	-	2		3	3	3	2
CO 6	3	3	3	2	3	1	-	1		3	2	3	1

SI.	Subject	Subiect Name	Credi	н	our	S	Examination Marks			
No	Code		ts	L	т	Ρ	CI	SE	Tot	
1	UBT704C	Economics and Plant Design	3	3	0	0	50	50	100	
2	UBT715C	Downstream Processing Technology	3	2	2	0	50	50	100	
3	UBT72XE	Elective- 4	3	3	0	0	50	50	100	
4	UBT73XE	Elective-5	3	3	0	0	50	50	100	
	LIBT716H	Industrial Management and				0	50	50	100	
5	00171011	Entrepreneurship	3	3	0					
6	UXX7XXN	Open Elective-3	3	3	0	0	50	50	100	
7	UBT711I	Industrial Internship	2	0	0	4	50	50	100	
8	UBT710L	Bioseparation Techniques Lab	1	0	0	2	50	50	100	
9	UBT701T	Technical Seminar	1	2	0	0	50	50	100	
		Total	22	1 9	2	6	45 0	45 0	900	

VII-Semester -2022-23

Elective- 4

UBT722E: Aquaculture & Marine biotechnology UBT724E: Food processing technology design UBT723E: Dairy Biotechnology UBT725E:Protein Engineering and Drug

Elective- 5

UBT731E: Nanobiotechnology & biomaterials UBT733E: Bioconjugative technology UBT732E: Computational biology UBT734E: Food Biotechnology

Subject Code: 22 UBT704C		3 Credits: (3	3: 0: 0)
L: T: P – 3-0-0	ECONOMICS & PLANT DESIGN	CIE Marks	: 50
Total Hours/Week:		SEE Marks	: 50
	UNIT-I		10 Hrs.
Process design developme Design project procedure, flow diagrams, preliminary specifications, and materia General design considerat Marketability of the produ- utilities, site characteristics storage, materials handling	Int design information from the literature and other design and equipment design and specialization ls of construction. ions: ct, availability of technology, raw materials, hum s, plant location, plant layout, plant operation an g, materials and fabrication selection,. Waste dis	r sources of info n, safety factors nan resources, l nd control, utilit posal communi	ormation, and and ies, ty
factors. Safety and hazard	control measures.		4211
	UNII-II		12Hrs.
Manufacturing costs and p Manufacturing Costs: Direc maintenance and repair, o Plant Overheads: Administ	Diant overneads: It Production costs (including raw materials, hun perating supplies, power and other utilities, roya ration, safety and other auxiliary services, Conce	nan resources, Ilties, etc.), fixe eptual numerica	d charges II.
	UNIT-III		10 Hrs.
Cost analysis Cost Analysis: Factors invol the capital investment. Est Depreciation: different typ	ved in project cost estimation, methods employ imation of working capital be of depreciation methods of and calculations, (ed for the estin Conceptual nun	nation of nerical.
	UNIT-IV		10 Hrs.
Profitability analysis Methods for the evaluatior Cash flow diagrams. Break-	n of profitability. Return on original investment, even analysis. Conceptual numericals.	interest rate of	return,
	REFERENCE BOOKS		
 Peters and Timmerhaus edn.McGraw Hill. Rudd and Watson (198 	s (1989) Plant Design and Economics for Chemic	al Engineers, 4t	

Publishing House.

- 5. Khanka SS (2004) Entrepreneurship Development, S Chand & Co.
 - Thomas W. Zimmer, Norman M. Scarborough.(2007), Essentials of Entrepreneurship and small Business Management

LEARNING OBJECTIVES

COURSE OUTCOMES

At the end of the course the student should be able to:

- 1. Acquire knowledge in the design of a plant.
- 2. Conduct preliminary feasibility study of the plant design assigned.
- 3. Estimate the cost analysis involved in the design of a chemical plant.
- 4. Analyze the project profitability and alternative investments for the selection of good investment projects
- 5. Develop entrepreneurs with substantial knowledge in engineering concepts.
- 6. Apply the knowledge of plant design and cost estimation in actual engineering problems.

Course Outcomes				Р	rogr	Progr	Programme Specific Outcomes								
	1	1 2 3 4 5 6 7 8 9 10 11 12												PSO2	PSO3
CO 1	2	2	1	1			1	1	1		2		2		
CO 2	2	1	2	1			1	1	1		3		2		
CO 3	1	2	1	2			1	1	1		2		1		
CO 4	2	1	2	2			1	1	1		3		2		
CO 5	1	1	2	1			1	1	1		2		1		
CO 6	2	2	2	1			1	1	1		2		2		

Subject Code: 22 UBT715C	3 Credits: (3: 0: 0)
L: T: P – 2-2-0	CIE Marks: 50
Total Hours/Week: 40	SEE Marks: 50

I	n	t	r	o	d	u	С	ti	ic	n
		•		v	ч	u	L	•	L.	

Role and importance of downstream processing in biotechnological processes. Range and characteristics of bioproducts. Purification process of bio-product. Cell disruption methods for intracellular products; physical, chemical and mechanical methods. Basic principles of distillation,crystallization, centrifugation, ultracentrifugation (preparative and analytical). Types of centrifuges and rotors,centrifugation-differential,density gradient (zonal and isopycnic).

UNIT-I

UNIT-II

UNIT-III

Primary Recovery Operations

Process involved in liquid-liquid extraction, solid-liquid extraction, ammonium sulphate precipitation, Precipitation of proteins and nucleic acids by solvents and polyethylene glycol, dialysis, electrodialysis, ultrafiltration (Removal of insolubles by filtration), reverse osmosis, drying and lyophilization. Membrane based separations theory, design and configuration of membrane separation equipment.

Chromatography

Principles of chromatographic seperations, Classification of chromatography- plain and column chromatography, Paper chromatography - Single dimensional (Ascending and Descending, radial and two dimensional) chromatography, partition coefficient, retention factor, Thin layer chromatography, Gas liquid Chromatography, Adsorption Chromatography: Adsorption column chromatography, Ion Exchange Chromatography: cation Exchange and anion Exchange chromatography. Gel Filtration Chromatography, Affinity Chromatography, High Performance liquid chromatography, NP-HPLC and RP-HPLC.

Electrophoresis

Electrophoresis principles, factors affecting electrophoresis mobility, Moving boundary electrophoresis, Zone Electrophoresis, Gel Electrophoresis, Continuous Gel electrophoresis, Disc Gel electrophoresis, Agarose Gel Electrophoresis, Capillary Electrophoresis,Cellulose Acetate, Starch Gel, Native and SDS-PAGE, High voltage electrophoresis, Isoelectric focusing, Immunoelectrophoresis, ELISA, Flow cytometry.

UNIT-IV

Downstream Processes

Case studies (production)-DSP flowsheets for penicillin, insulin, amino acid, monoclonal antibody.

10 Hrs.

10 Hrs.

12Hrs.

10 Hrs.

REFERENCE BOOKS

- 1. BioseparationsPrinciples and techniques, by B.Sivasankar, Kindle edition,PHI Publishers, 2010
- 2. Biophysical chemistry principles and Techniques by Upadhay and Nath, Himalaya Publishing House, 3rd edition, 2010
- 3. NPTEL Source material.
- 4. Bioseparations Downstream processing for biotechnology by Belter P.A., Cussier E. and Wei Shan Hu., Wiley Interscience Pub, 1988
- 5. Separation Processes in Biotechnology by Asenjo J. and Dekker M, 1993.
- 6. Product Recovery in Bioprocess Technology BIOTOL Series, VCH, 1990
- 7. Rate controlled separations by Wankat P.c., Elsevier, 1990
- 8. Fermentation & Enzyme Technology by D.I.C. Wang, Wiley Eastern 1979

LEARNING OBJECTIVES

- 1. Identify the basic separation unit operation in DSP like membrane separation, enrichment operation, product recovery and various resolutions and fractionation techniques.
- 2. Interpret and analyze the industrial fermentation processes.
- 3. Apply the knowledge in identifying various pharma and R&D sections.
- 4. Analyse the details of experimentation pertaining to chromatography and electrophoresis.
- 5. Understand analyse and apply the techniques in various tests involved in finding out purity of biological components.
- 6. Apply the knowledge in identifying various biochemicals using advanced purifications like HPLC and to demonstrate DSP flowsheets.

Course				F	Programme Specific										
Outcomes		Outcomes													
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1			2			3	2	2				1	2	1	1
CO 2			2			3	2	3				1	2	1	1
CO 3			1			3	2	2				1	2	1	1
CO 4			2			3	2	2				1	2	1	1
CO 5			1			3	3	3				1	2	1	1
CO 6			1			3	2	2				2	2	1	1

Subject Code: 22	
UBT724E	

L: T: P – 2-2-0

Total Hours/Week: 40

CIE Marks: 50 SEE Marks: 50

Introduction

Constituents of food, soluble fibres, protein rich foods, popular fats and oils in foods, Food flavours, Browning reactions and its effects . Intrinsic and extrinsic parameters of foods, effect of inhibitors, pH and temperature. Minerals in foods. Aroma compounds in foods .Food additives, Vitamins, amino acids, Sweeteners, Food colours. Toxic-trace elements in food.

UNIT–II

UNIT-I

Detection of Microorganisms

Culture, Microscopic and Sampling Methods, Conventional; SPC, Membrane Filters, Microscope colony Counts, Agar Droplets, Dry Films, Most probable Numbers (MPN), Dyereduction, Roll Tubes, Direct, Microscopic Count (DMC), Microbiological Examination of surfaces, Air Sampling, Metabolically Injured Organisms, Enumeration and Detection of Food-borne Organisms. Dairy products: Composition of milk, Sterilization of milk (Pasteurization and UHT), Cheese production, Acidophilus milk Yoghurt, Kumiss and Kefir. Marketing scope of dairy & food products Fruit and vegetable processing: Jam, jelly, Juice, squash, wine, pickles and sauerkraut

UNIT-III

Food Spoilage & Preservation

The Role and Significance of Microorganisms, Primary Sources of Microorganisms found in Foods Synopsis of common borne bacteria, Molds& Yeasts. Microbial Spoilage of Vegetables, Fruits, Fresh and Processed Meats, Poultry, and Seafood. Spoilage of Miscellaneous Foods, Food Preservation: Principles Underlying in spoilage and preservation, Application, Effect and Legal Status of Food Irradiation, Food Preservation with Low Temperatures, High Temperatures and Drying. Food Industry: Characteristics of Food Industry.:, nutritional food supplements. Food packaging, New trends in packing, edible films. Factors influencing food product development, marketing, and promotional strategies, risks and benefits of food industry.

UNIT-IV

10 Hrs.

Food Engineering

Properties of fluid foods, Measurement of rheological parameters .Thermal properties of frozen foods. Food freezing equipment, storage of frozen foods. Food dehydration: Freeze Dehydration Calculation of drying times. Food waste management.

REFERENCE BOOKS

1. Food Science & Nutrition, by Sunetra Roady, Oxford University Press, 2007.

2. Food microbiology by William Frazier and Westhoff D.C, 4thEdn,TATA McGraw Hill

10 Hrs.

12Hrs.

10 Hrs.

Pub(2005)

- 3. Modern Food Micro-Biology by James M.Jay, CBS Publishers.2005.
- 4. Food Microbiology by K.Vijay RameshMJP Publishers, 2007.
- 5. Plant biotechnology In Agriculture by K. Lindsey and M.G.K. Jones, Prentice Hall, USA. 1990.
- 6. Food Science By Potter N.N. and Joseph Hotchkiss, 5thEdn, CBSPub, 1996.

LEARNING OBJECTIVES

- 1. Able to know about basic constituents of food
- 2. Able to know the techniques involved in detection of microbes in food industry
- 3. To have idea about Dairy, fruits and vegetable processed products and production
- 4. To be aware of different food spoilage and preservation techniques
- 5. To know the Characteristics of food industry and scope
- 6. Able to understand Basic concepts in food Engineering for preservation

Course					Progr	amm	ie Ou	tcom	les				Progra	Programme Specific			
Outcomes		Outcomes															
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3		
CO 1			2			3	2	2				1	2	1			
CO 2			2			3	2	3				1	2	1			
CO 3			1			3	2	2				1	2	1			
CO 4			2			3	2	2				1	2	1			
CO 5			1			3	3	3				1	2	1			
CO 6			1			3	2	2				2	2	1			

Subject Code: 22 UBT731E	Code: 22						
L: T: P – 2-2-0	NANOBIOTECHNOLOGY AND BIOWATERIALS	CIE Marks: 50					
Total Hours/Week: 40		SEE Marks: 50					

UNIT-I	10 Hrs.							
Introduction to nanotechnology								
A Brief History of the Nano particles : Bottom-Up versus Top-Down; What Is								
Nanobiotechnology. Discussions on nanofabrication, nanolithography, nanotubes, buckyba	alls,							
structure-property relationships in materials, materials characterization techniques, scan	ning							
electron, scanning tunneling and atomic force microscopy(SEM,STM & AFM), biomolecule interactions, quantum dots,	e-surface							
Applications of nanotechnology in the life sciences:								
Buckyballs and Buckytubes, Diagnostics and Sensors, Drug Delivery Revenues Health Risks	and							
Challenge.								
UNIT–II	12Hrs.							
Biopolymers								
elastic moduli, sterilization and disinfections of polymeric materials. Biocompatibility of polymerically modified glycosaminoglycans, heparin like substances from nonglycosaminogly polysaccharides and microbial glycosaminoglycan, surface immobilized heparins.	t on olymers, ycan							
UNIT–III	10 Hrs.							
Synthetic polymers								
Polymers in biomedical use, polyethylene and polypropylene, perfluorinated polymers, ac polymers, hydrogels, polyurethanes, polyamides, biodegradable synthetic polymers, silico rubber, plasma polymerization, micro-organisms in polymeric implants, polymer sterilizat	rylic me ion.							
UNIT–IV	10 Hrs.							
Biocompatibility								
Definition, Wound healing process-bone healing, tendon healing. Material response: Fund	tion and							
Degradation of materials in vivo. Host response: Tissue response to biomaterials . Testing	of							
implants: Methods of test for biological performance-In vitro implant tests, In vivo implan methods.	it test							
Medical devices								
Polyurethane elastomers, applications of polymers in medicine and surgery. Skin graft polymers, Properties of implant materials, metals and alloys.								

REFERENCE BOOKS

TEXT BOOKS:

- B.Vishwanath "Nano Materials" Published by Narosa Publishing House Pvt. Ltd., New Delhi, 2011.
- 2. K Eric Drexler "Unbounding the future" Quill,1993.
- 3. Stephen Lee and Lynn M Savage "Biological molecules in Nanotechnology" 2010.
- 4. Mark Ratner and Daniel Ratner "Nanotechnology: A Gentle Introduction to Next Gig Idea" Pearson Ecducation Ltd, 2003.

LEARNING OBJECTIVES

- 1. Ability to explain the characterization techniques of nanotechnology.
- 2. Ability to understand the importance of nano-particles in drug delivery system.
- 3. Ability to understand the importance of biopolymers.
- 4. Ability to differentiate biopolymer and synthetic polymer.
- 5. Ability to understand the importance of biocompatibility.
- 6. Ability to apply the methods to test the implants and use in medical devices.

Course					Prog	Progr	Programme Specific								
Outcomes						Outcomes									
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	2	3	3			1	2					2	2	2	1
CO 2	1	2	3			1	2					3	3		
CO 3	2	2	3			2	2	3				3	2	2	1
CO 4	3	3	3			2	2	2				2	2	1	1
CO 5	3	3	3			1	2	3				1	2	3	
CO 6	2	3	3			3	3	3				3	3	3	3

Subject	Code:	22
	-	

UBT716H L: T: P – 3-0-0

Total Hours/Week: 40

INDUSTRIAL MANAGEMENT AND ENTREPRENEURSHIP

CIE Marks: 50 SEE Marks: 50

UNIT-I	10 Hrs.
DEVELOPMENT OF MANAGEMENT THOUGHTS AND ITS FUNCTIONS	
Concept & definition of Management, Social Responsibilities of Management, and Pionee Management: Contributions of Taylor, Henry Taylor, Gilberth & Mayo, Schools of Manage thought: Management process school, Empirical School, Human Behavior School, Social s school, Systems approach school and decision theory school. Selection of site for the plan plant layout, plant operation and control, utilities, structural design, storage, material har Sources of capital. Definition and functions of administration. Planning, organizing, staffi directing and controlling. Concept of authority and responsibility.	ers in ement ystem nt and ndling, ng, 12Hrs .
	121113.
Concept of productivity, measuring productivity, concept of budget, effective budgetary ABC analysis, break even analysis, product life cycle, promotion of sales, pricing, "EOQ"m Production costs (including raw materials, and repair, operating supplies, power and othe royalties, etc.), fixed charges (including depreciation, taxes, insurance, rental costs etc.).	control, odel. er utilities,
UNIT–III	10 Hrs.
PRODUCTION AND MATERIAL MANAGEMENT	
Types of production, types of planning, manufacturing planning, factory planning, produc planning, method study, systems of wage payments, bonus, automation, organization of production, planning. Functions of purchasing & materials management, quality, quality s inspection, sources of supply, pricing, principles & practices, Inventory management.	tion tandard &
UNIT–IV	10 Hrs.
ENTREPRENEURSHIP & PERSONNEL MANAGEMENT	
Meaning of entrepreneur, evaluation of the concept, function of entrepreneur, evolution entrepreneurship, development of entrepreneurship, stages in entrepreneurial process, r entrepreneurs in economic development entrepreneurship- its barriers. Recruitment and Training of personnel. Employer - Employee relationship. Settlement of disputes.	of ole of selection.
REFERENCE BOOKS	
 O.P. Khanna - "Industrial Engineering & Management", Dhanpat Rai & Sons, 19 T. R. Banga & s. C. Sharma - "Industrial Engineering & Management Science", 6 Khanna Publications, 2003 C.B.Mamoria and S.V.Gankar- Personnel Management, Himalaya Pub, 21 st ed 4. Veerabhadra Havinal -Management and Entrepreneurship- New Age Internation 	992. 5th. Edn, n,2010 onal.2009
5. Ramesh Burbure – Management & Entrepreneurship- Rohan Pub.2008	-,

6. Poornima M. Charanthimath – Entrepreneurship Development, Pearson Education-2005

LEARNING OBJECTIVES

- 1. Ability to recall and recollect the history theories and definition of management and its importance in society
- 2. To analyze and apply the basic concepts of Quantitative techniques of management
- Ability to know the difference between production and productivity, measurement and cost analysis
- 4. Explore the knowledge of production costs, planning and material management
- 5. Able to make basic economic analysis of project
- 6. To be aware of making business ideas and prepare project planning
- 7. Ability to understand the role and importance of entrepreneurship in economic development
- 8. Ability to know the importance of personnel management

Course					Drogr			tcom	00				Progra	mme Sp	pecific
Outcomes						0	utcome	S							
	1 2 3 4 5 6 7 8 9 10 11 12											PSO1	PSO2	PSO3	
CO 1	2	2		3	2		1					1	2	1	1
CO 2	2	1	2	3	2		1						2	1	2
CO 3	1	2	1	2	2		1					1	2	1	2
CO 4	2	1	2	3	1		1						2	1	3
CO 5	1	1	2		2		1					1	2	1	3
CO 6	2	3	2	1		2							2	1	3
CO 7	2	1	3	1								1	2	1	2
CO 8	1	2	1										2	1	2

Subject Code: 22

UBT710L L: T: P – 2-2-0

BIOSEPARATION TECHNIQUES LAB

3 Credits: (3: 0: 0)

CIE Marks: 50 SEE Marks: 50

Total Hours/Week: 40

LIST OF EXPERIMENTS

- 1. Cell disruption techniques.
- 2. Solid-liquid separation methods: Filtration (Cross flow)
- 3. Solid-liquid separation methods: Sedimentation.
- 4. Solid-liquid separation methods: Centrifugation.
- 5. Membrane dialysis
- 6. Product enrichment operations: Precipitation (NH4)2 SO4 fractionation of a protein.
- 7. Product enrichment operations: Two phase aqueous extraction.
- 8. Product drying techniques.
- 9. Estimation of Amino acids / Carbohydrates by TLC.
- 10. Separation of ethanol from fermented broth.
- 11. Separation of Citric acid from fermented broth.
- 12. Separation of proteins by molecular sieving.
- 13. Analysis of biomolecules by HPLC / GC (using standard spectra).

REFERENCE BOOKS

- 1. Protein Purification by Scopes R.K., IRL Press, 1993.
- 2. Rate controlled separations by Wankat P.C., Elsevier, 1990
- 3. Bioseparations by Belter P.A. and Cussier E., Wiley, 1985.
- 4. Bio-separations Science & Engineering By Roger G Harrison, Paul Todd, Scott R Rudge, Demetri.
- 5. Product Recovery in Bioprocess Technology BIOTOL Series, VCH, 1990
- 6. Separation processes in Biotechnology by Asenjo J. and Dekker M. 1993

LEARNING OBJECTIVES

- 1. Able to prepare/reproduce the protocols for the experiments.
- 2. Able to extract the intracellular product using different cell disruption techniques.
- 3. Able to concentrate, purify the desired product using different chromatography/ filtration techniques.
- 4. Able to analyze the product both quantitative/qualitatively.
- 5. Able to record/observe the experimental data and interpret them in the graph/table.
- 6. Able to calculate the result and to write the conclusion at the end of the experiment.

Course	Programme Outcomes												Programme Specific		
Outcomes													Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3												3		1
CO 2		2												3	1
CO 3			3										2	2	1
CO 4				3	3								2	2	1
CO 5		3										2	2	3	1
CO 6		3										2	3	2	1